
WRF Registry and Examples

John Michalakes, NREL

Michael Duda, NCAR

Dave Gill, NCAR

WRF Software Architecture Working Group

Outline

•  Registry Mechanics

 - - - - - - - - - - - -

•  Examples

Introduction – Intended Audience

•  Intended audience for this tutorial session: scientific users and others who wish to:

–  Understand overall design concepts and motivations

–  Work with the code

–  Extend/modify the code to enable their work/research
–  Address problems as they arise

–  Adapt the code to take advantage of local computing resources

Introduction – WRF Resources

•  WRF project home page

–  http://www.wrf-model.org

•  WRF users page (linked from above)

–  http://www.mmm.ucar.edu/wrf/users

•  On line documentation (also from above)

–  http://www.mmm.ucar.edu/wrf/WG2/software_v2

•  WRF user services and help desk

–  wrfhelp@ucar.edu

WRF Software Architecture

•  Hierarchical software architecture

–  Insulate scientists' code from parallelism and other architecture/implementation-specific
details

–  Well-defined interfaces between layers, and external packages for communications, I/O, and
model coupling facilitates code reuse and exploiting of community infrastructure, e.g. ESMF.

Registry

WRF Registry

•  "Active data-dictionary” for managing WRF data structures

–  Database describing attributes of model state, intermediate, and
configuration data

• Dimensionality, number of time levels, staggering

• Association with physics
•  I/O classification (history, initial, restart, boundary)

• Communication points and patterns

• Configuration lists (e.g. namelists)
• Nesting up- and down-scale interpolation

WRF Registry

•  "Active data-dictionary” for managing WRF data structures

–  Program for auto-generating sections of WRF from database:

• 2000 - 3000 Registry entries ⇒ 300-thousand lines of
automatically generated WRF code

• Allocation statements for state data and I1 data
•  Interprocessor communications: Halo and periodic boundary

updates, transposes
• Code for defining and managing run-time configuration information
• Code for forcing, feedback, shifting, and interpolation of nest data

WRF Registry

•  Why?

–  Automates time consuming, repetitive, error-prone programming
–  Insulates programmers and code from package dependencies

–  Allow rapid development
–  Documents the data

•  A Registry file is available for each of the dynamical cores, plus special

purpose packages

•  Reference: Description of WRF Registry,

http://www.mmm.ucar.edu/wrf/WG2/software_v2

Registry Data Base

•  Currently implemented as a text file: Registry/Registry.EM

•  Types of entry:

–  Dimspec – Describes dimensions that are used to define arrays in the
model

–  State – Describes state variables and arrays in the domain structure

–  I1 – Describes local variables and arrays in solve
–  Typedef – Describes derived types that are subtypes of the domain

structure

Registry Data Base

•  Types of entry:

–  Rconfig – Describes a configuration (e.g. namelist) variable or array

–  Package – Describes attributes of a package (e.g. physics)
–  Halo – Describes halo update interprocessor communications

–  Period – Describes communications for periodic boundary updates
–  Xpose – Describes communications for parallel matrix transposes

–  Include – Similar to a CPP #include file

Registry State Entry

•  Elements
–  Entry: The keyword “state”
–  Type: The type of the state variable or array (real, double,

integer, logical, character, or derived)
–  Sym: The symbolic name of the variable or array
–  Dims: A string denoting the dimensionality of the array or a

hyphen (-)
–  Use: A string denoting association with a solver or 4D scalar

array, or a hyphen
–  NumTLev: An integer indicating the number of time levels (for

arrays) or hypen (for variables)

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

•  Elements
–  Stagger: String indicating staggered dimensions of variable (X, Y,

Z, or hyphen)
–  IO: String indicating whether and how the variable is subject to I/

O and Nesting
–  DName: Metadata name for the variable
–  Units: Metadata units of the variable
–  Descrip: Metadata description of the variable

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

•  This single entry results in over 100 lines of code automatically added to
more than 40 different locations in the WRF model, the real and ideal
initialization programs, and in the WRF-Var package

•  Nesting code to interpolate, force, feedback, and smooth u

•  Addition of u to the input, restart, history, and LBC I/O streams

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

Declaration and dynamic allocation of arrays in TYPE(domain)

Two 3D state arrays corresponding to the 2 time levels of U
u_1 (ims:ime , kms:kme , jms:jme)
u_2 (ims:ime , kms:kme , jms:jme)

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

Registry State Entry

Declaration and dynamic allocation of arrays in TYPE(domain)

Eight LBC arrays for boundary and boundary tendencies (dimension
example for x BC)

u_b[xy][se] (jms:jme, kms:kme, spec_bdy_width, 4)
u_bt[xy][se] (jms:jme, kms:kme, spec_bdy_width, 4)

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

State Entry: Defining a variable-set for an I/O stream

•  Fields are added to a variable-set on an I/O stream in the Registry

IO is a string that specifies if the variable is to be subject
to initial, restart, history, or boundary I/O. The string
may consist of 'h' (subject to history I/O), 'i' (initial
dataset), 'r' (restart dataset), or 'b' (lateral boundary
dataset). The 'h', 'r', and 'i' specifiers may appear in any
order or combination.

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

State Entry: Defining a variable-set for an I/O stream

•  Fields are added to a variable-set on an I/O stream in the Registry

The ‘h’ and ‘i’ specifiers may be followed by an optional
integer string consisting of ‘0’, ‘1’, … , ‘9’ Zero denotes
that the variable is part of the principal input or history I/
O stream. The characters ‘1’ through ‘9’ denote one of
the auxiliary input or history I/O streams.

usdf refers to nesting options: u = UP, d = DOWN, s =
SMOOTH, f = FORCE

Type Sym Dims Use Tlev Stag IO Dname Descrip

state real u ikjb dyn_em 2 X i01rhusdf "U" "X WIND COMPONENT“

State Entry: Defining Variable-set for an I/O stream

irh -- The state variable will be included in the WRF model
input, restart, and history I/O streams

irh13 -- The state variable has been added to the first and
third auxiliary history output streams; it has been removed
from the principal history output stream, because zero is not
among the integers in the integer string that follows the
character 'h’

State Entry: Defining Variable-set for an I/O stream

rh01 -- The state variable has been added to the first
auxiliary history output stream; it is also retained in the
principal history output

i205hr -- Now the state variable is included in the principal
input stream as well as auxiliary inputs 2 and 5. Note that the
order of the integers is unimportant. The variable is also in the
principal history output stream

State Entry: Defining Variable-set for an I/O stream

ir12h -- No effect; there is only 1 restart data stream

i01 -- Data goes into real and into WRF

i1 -- Data goes into real only

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

Rconfig Entry

•  This defines namelist entries

•  Elements

–  Entry: the keyword “rconfig”
–  Type: the type of the namelist variable (integer, real, logical,

string)
–  Sym: the name of the namelist variable or array
–  How set: indicates how the variable is set: e.g. namelist or

derived, and if namelist, which block of the namelist it is set in

Rconfig Entry

•  This defines namelist entries

•  Elements

–  Nentries: specifies the dimensionality of the namelist variable or
array. If 1 (one) it is a variable and applies to all domains;
otherwise specify max_domains (which is an integer parameter
defined in module_driver_constants.F).

–  Default: the default value of the variable to be used if none is
specified in the namelist; hyphen (-) for no default

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

Rconfig Entry

•  Result of this Registry Entry:
–  Define an namelist variable

“spec_bdy_width” in the bdy_control
section of namelist.input

–  Type integer (others: real, logical,
character)

–  If this is first entry in that section, define
“bdy_control” as a new section in the
namelist.input file

–  Specifies that bdy_control applies to all
domains in the run

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

 --- File: namelist.input ---

&bdy_control
 spec_bdy_width = 5,
 spec_zone = 1,
 relax_zone = 4,
 . . .
 /

Rconfig Entry

•  Result of this Registry Entry:

–  if Nentries is “max_domains” then the
entry in the namelist.input file is a
comma-separate list, each element of
which applies to a separate domain

–  The single entry in the Registry file
applies to each of the separate domains

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

 --- File: namelist.input ---

&bdy_control
 spec_bdy_width = 5,
 spec_zone = 1,
 relax_zone = 4,
 . . .
 /

Rconfig Entry

•  Result of this Registry Entry:

–  Specify a default value of “1” if nothing
is specified in the namelist.input file

–  In the case of a multi-process run,
generate code to read in the
bdy_control section of the namelist.input
file on one process and broadcast the
value to all other processes

Type Sym How set Nentries Default
rconfig integer spec_bdy_width namelist,bdy_control 1 1

 --- File: namelist.input ---

&bdy_control
 spec_bdy_width = 5,
 spec_zone = 1,
 relax_zone = 4,
 . . .
 /

Outline

•  Registry Mechanics

 - - - - - - - - - - - -

•  Examples

–  0) Add output without recompiling
–  1) Add a variable to the namelist

–  2) Add an array

–  3) Compute a diagnostic

–  4) Add a physics package

Example 0: Add output without recompiling

•  Edit the namelist.input file, the time_control namelist record

iofields_filename = "myoutfields.txt” (MAXDOM)
io_form_auxhist7 = 2 (choose an available stream)

auxhist7_interval = 10 (MAXDOM, every 10 minutes)

•  Place the fields that you want in the named text file myoutfields.txt

+:h:7:RAINC,RAINNC

•  Where “+” means ADD this variable to the output stream, “h” is the history
stream, and “7” is the stream number

Example 0: Zap output without recompiling

•  Edit the namelist.input file, the time_control namelist record

iofields_filename = "myoutfields.txt”

•  Place the fields that you want in the named text file myoutfields.txt

-:h:0:W,PB,P

•  Where “-” means REMOVE this variable from the output stream, “h” is the history
stream, and “0” is the stream number (standard WRF history file)

Example 1: Add a variable to the namelist

•  Use the examples for the rconfig section of the Registry

•  Find a namelist variable similar to what you want

–  Integer vs real vs logical vs character
–  Single value vs value per domain

–  Select appropriate namelist record

•  Insert your mods in all appropriate Registry files

Example 1: Add a variable to the namelist

•  Remember that ALL Registry changes require that the WRF code be

cleaned and rebuilt

./clean -a

./configure

./compile em_real

Example 1: Add a variable to the namelist

•  Adding a variable to the namelist requires the inclusion of a new line

in the Registry file:

rconfig integer my_option_1 namelist,time_control 1 0 - "my_option_1" "test namelist option”
rconfig integer my_option_2 namelist,time_control max_domains 0

•  Accessing the variable is through an automatically generated function:

USE module_configure
INTEGER :: my_option_1 , my_option_2

CALL nl_get_my_option_1(1, my_option_1)
CALL nl_set_my_option_2(grid%id, my_option_2)

Example 1: Add a variable to the namelist

•  You also have access to the namelist variables from the grid structure …

SUBROUTINE foo (grid , ...)

 USE module_domain
 TYPE(domain) :: grid

 print *,grid%my_option_1

Example 1: Add a variable to the namelist

•  … and you also have access to the namelist variables from config_flags

SUBROUTINE foo2 (config_flags , ...)

 USE module_configure
 TYPE(grid_config_rec_type) :: config_flags

 print *,config_flags%my_option_2

Example 1: Add a variable to the namelist

•  What your variable looks like in the namelist.input file

 &time_control
 run_days = 0,
 run_hours = 0,
 run_minutes = 40,
 run_seconds = 0,
 start_year = 2006, 2006, 2006,
 my_option_1 = 17
 my_option_2 = 1, 2, 3

Examples

•  1) Add a variable to the namelist

•  2) Add an array to solver, and IO stream

•  3) Compute a diagnostic

•  4) Add a physics package

Example 2: Add an Array

•  Adding a state array to the solver, requires adding a single line in the

Registry

•  Use the previous Registry instructions for a state or I1 variable

Example 2: Add an Array

•  Select a variable similar to one that you would like to add

–  1d, 2d, or 3d

–  Staggered (X, Y, Z, or not “-”, do not leave blank)
–  Associated with a package

–  Part of a 4d array
–  Input (012), output, restart

–  Nesting, lateral forcing, feedback

Example 2: Add an Array

•  Copy the “similar” field’s line and make a few edits

•  Remember, no Registry change takes effect until a “clean -a” and
rebuild

state real h_diabatic ikj misc 1 - r \!
 "h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"!

state real msft ij misc 1 - i012rhdu=(copy_fcnm) \!
 "MAPFAC_M" "Map scale factor on mass grid"!

state real ht ij misc 1 - i012rhdus \!
 "HGT" "Terrain Height" !

state real ht_input ij misc 1 - - \!
 "HGT_INPUT" "Terrain Height from FG Input File"!

state real TSK_SAVE ij misc 1 - - \!
 "TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"!

Example 2: Add an Array

•  Always modify Registry.core_name, where core_name might be EM,
for example

state real h_diabatic ikj misc 1 - r \!
 "h_diabatic" "PREVIOUS TIMESTEP CONDENSATIONAL HEATING"!

state real msft ij misc 1 - i012rhdu=(copy_fcnm) \!
 "MAPFAC_M" "Map scale factor on mass grid"!

state real ht ij misc 1 - i012rhdus \!
 "HGT" "Terrain Height" !

state real ht_input ij misc 1 - - \!
 "HGT_INPUT" "Terrain Height from FG Input File"!

state real TSK_SAVE ij misc 1 - - \!
 "TSK_SAVE" "SURFACE SKIN TEMPERATURE" "K"!

Example 2: Add an Array

•  Add a new 3D array that is sum of all moisture species, called
all_moist, in the Registry.EM

–  Type: real

–  Dimensions: 3D and ikj ordering, not staggered

–  Supposed to be output only: h

–  Name in netCDF file: all_moist

state real all_moist ikj \!
dyn_em 1 - h \!
"all_moist" \!
"sum of all of moisture species" \!
"kg kg-1"!

Example 2: Add an Array

•  Registry state variables become part of the derived data structure
usually called grid inside of the WRF model.

•  WRF model top integrate solve_interface solve

•  Each step, the grid construct is carried along for the ride

•  No source changes for new output variables required until below the
solver routine

Example 2: Add an Array

•  Top of solve_em.F

•  grid is passed in

•  No need to declare any new variables, such as all_moist

!WRF:MEDIATION_LAYER:SOLVER!

 SUBROUTINE solve_em (grid , &!

 config_flags , &!

Example 2: Add an Array

•  In solve_em, add the new array to the call for the microphysics driver

•  Syntax for variable=local_variable is a association convenience

•  0D, 1D, 2D, 3D state arrays are contained within grid, and must be
de-referenced

 CALL microphysics_driver(&!
 QV_CURR=moist(ims,kms,jms,P_QV), &!
 QC_CURR=moist(ims,kms,jms,P_QC), &!
 QR_CURR=moist(ims,kms,jms,P_QR), &!
 QI_CURR=moist(ims,kms,jms,P_QI), &!
 QS_CURR=moist(ims,kms,jms,P_QS), &!
 QG_CURR=moist(ims,kms,jms,P_QG), &!
 QH_CURR=moist(ims,kms,jms,P_QH), &!
 all_moist=grid%all_moist , &!

Example 2: Add an Array

•  After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

–  Pass the variable through the argument list

–  Declare our passed in 3D array

 ,all_moist &!

REAL, DIMENSION(ims:ime ,kms:kme ,jms:jme), &!
 INTENT(OUT) :: all_moist!

Example 2: Add an Array

•  After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

–  Zero out the array at each time step

 ! Zero out moisture sum.!

 DO j = jts,MIN(jde-1,jte)!
 DO k = kts,kte!
 DO i = its,MIN(ide-1,ite)!
 all_moist(i,k,j) = 0.0 !
 END DO!
 END DO!
 END DO!

Example 2: Add an Array

•  After the array is re-referenced from grid and we are inside the
microphysics_driver routine, we need to

–  At the end of the routine, for each of the moist species that
exists, add that component to all_moist

 DO j = jts,MIN(jde-1,jte)!
 DO k = kts,kte!
 IF (f_QV) THEN!
 DO i = its,MIN(ide-1,ite)!
 all_moist(i,k,j) = all_moist(i,k,j) + &!
 qv_curr(i,k,j)!
 END DO!
 END IF!

